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Microcavity-Enhanced Surface-Emitted
Second-Harmonic Generation for Ultrafast

All-Optical Signal Processing
Todd G. Ulmer, Marc Hanna, Brian R. Washburn, Stephen E. Ralph, and Anthony J. SpringThorpe

Abstract—By incorporating an integrated microcavity into an
optical waveguide structure with vertical quasi-phase-matching,
we have realized surface-emitted second-harmonic generation de-
vices that significantly enhance the conversion efficiency for optical
pulses in the picosecond and sub-picosecond regimes. We demon-
strate both theoretically and experimentally that nonlinear inter-
actions involving short optical pulses can be enhanced by a micro-
cavity, even when the resonance width is substantially narrower
than the spectral content of the pulse. The resulting enhancement
enables practical signal processing functions such as ultrafast op-
tical time-division demultiplexing at 1.55 m in multilayer AlGaAs
structures.

Index Terms—Frequency conversion, integrated optics, non-
linear optics, optical resonators, optical signal processing, optical
waveguides, semiconductor waveguides, ultrafast optics.

I. INTRODUCTION

SURFACE-EMITTED second-harmonic generation
(SESHG) [1] offers a unique means for ultrafast optical

signal processing in a simple, integrated, nonlinear optical
waveguide. Indeed, many useful device applications have been
demonstrated, from integrated optical correlators [2] and spec-
trometers [3] to optical serial-to-parallel converters for time-
division demultiplexing [4], [5]. Such novel integrated devices
can serve as enabling technologies for advanced all-optical
signal processing applications. For example, practical and
efficient all-optical demultiplexing techniques for ultrafast
optical time-division multiplexing (OTDM) have immediate
applicability in high-speed optical networks.

The entire class of devices that exploit the large of III–V
semiconductors may be expected to have inherent efficiency ad-
vantages over -based device concepts. For example, period-
ically poled lithium niobate has been used with much success
for a variety of applications that benefit from a collinear geom-
etry [6]–[9]. In contrast, the surface-emitting geometry (Fig. 1)
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Fig. 1. Structure and operation of the SESHG device using a resonant
vertical cavity integrated with a channel waveguide. All-optical demultiplexing
is depicted in which a data stream comprises one fundamental wave and a
counter-propagating timing pulse comprises the other fundamental wave. The
upconverted data stream is emitted from the top surface.

produces a second-harmonic signal with a wave vector that is or-
thogonal to the counter-propagating fundamental wave vectors.
Thus, phase matching is required in the vertical direction, and
can be readily accomplished using epitaxial growth techniques
[10]. The large of III–V semiconductors allows significant
conversion efficiency, even for pulsed fundamental waves and
the commensurate short overlap lengths associated with the sur-
face-emitting geometry. Therefore, devices such as correlators
and spectrometers that make use of signal averaging techniques
are practical. However, all-optical demultiplexers cannot utilize
such techniques; therefore, enhancement of the SESHG process
is needed in order for practical short-pulse devices to be real-
ized.

A vertical microcavity resonant at the second-harmonic fre-
quency can dramatically enhance the SESHG conversion effi-
ciency. By incorporating properly positioned distributed Bragg
reflectors (DBRs) both above and below the SESHG waveguide,
in a geometry similar to that of a vertical-cavity surface-emit-
ting laser (VCSEL), the majority of the second harmonic ra-
diation is folded back upon the interacting fundamental pulses
in a coherent fashion. The microcavity effectively increases the
interaction length; epitaxial growth techniques allow the micro-
cavity to be sufficiently small such that multiple round trips of
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the second harmonic radiation occur during the overlap time of
the fundamental pulses, even for sub-picosecond pulses.

The realized enhancement depends on the spectral content
and temporal duration of the fundamental pulses. While en-
hancements of up to two orders of magnitude have been reported
in the quasi-CW regime, where the bandwidth of the second har-
monic is small compared to the resonance width of the cavity
[11]–[14], the short-pulse regime has not been explored. For
pulse widths on the order of a few picoseconds or less, the spec-
tral content of the pulse is comparable to or larger than the
cavity resonance, and the spectral filtering of the cavity must
be accounted for explicitly. In the short-pulse regime, the tem-
poral behavior of the second-harmonic pulse is also altered. Al-
though second-harmonic photons are only generated inside the
cavity during the time that the counter-propagating fundamental
pulses are spatially overlapped, typical microcavities allow the
average second harmonic radiation photon to make many round
trips in the cavity before being transmitted through one of the
high-reflectance mirrors. The second harmonic radiation power
emitted from the cavity assumes an exponentially decaying tem-
poral characteristic with a photon lifetime determined by the
mirror reflectances, the mirror separation, and the cavity loss.
This modified temporal response must be considered in appli-
cations such as OTDM, where intersymbol interference within
the high-rate data stream must be avoided. However, it will
be shown below that the optimum cavity parameters often re-
sult in cavity lifetimes of a few picoseconds or less while still
providing significant enhancement. Thus, microcavity enhance-
ment is practical for optical data streams such that the demulti-
plexed data rate is as high as 40 Gb/s.

Here we present a theoretical analysis of microcavity-en-
hanced SESHG, and show that it correctly describes the
experimentally observed behavior. Furthermore, we demon-
strate that significant enhancement is possible for pulses
on the order of a few hundred femtoseconds, enabling new
ultrafast device applications. We consider cavities with mirror
separations on the order of 0.5–3 m, corresponding to
5–30 , and focus on AlGaAs devices designed to
operate with fundamental wavelengths near 1.55m. We begin
with a description of the efficiency calculation via the SESHG
nonlinear cross-section (Section II). The total efficiency is
determined from the product of the base efficiency for the
waveguide structure and the enhancement factor due to the
cavity. We then derive an expression for the microcavity
enhancement and discuss several special cases (Section III).
We also show how to optimize the cavity parameters based on
the characteristics of the input pulses (Section IV). Finally, we
present experimental results and show that both the spectrum
and enhancement are accurately predicted, confirming the
validity of the theory (Section V).

II. SESHG EFFICIENCY CALCULATION

A. Overview

The geometry for SESHG is shown in Fig. 1. Counter-propa-
gating fundamental pulses in the waveguide interact to produce
a nonlinear polarization that radiates second harmonic radia-
tion light in the vertical direction; symmetry requires that equal

amounts of second harmonic radiation be radiated both up and
down [15]. The figure depicts a data stream optically demul-
tiplexed via the counter propagating timing pulse. Each colli-
sion of a data stream pulse with the timing pulse generates a
surface emitted second harmonic radiation signal at a different
location along the waveguide. A multilayer waveguide core is
used to establish a quasi-phase-matching (QPM) condition [3],
[10], allowing the second harmonic radiation field to accumu-
late constructively over multiple layers. In the absence
of a microcavity, the temporal envelope of the SESHG pulse is
the convolution of the fundamental pulses [16], while the spa-
tial distribution of second harmonic radiation along the length
of the waveguide is the correlation of the fundamental pulses
[2]. A DBR incorporated beneath the waveguide core redirects
the downward-propagating second harmonic radiation light to-
ward the surface [17]. Since the reflected second harmonic radi-
ation is coherent with the upward-emitted second harmonic ra-
diation, the net efficiency is determined by the relative phase of
these two second harmonic radiation components. As described
in Section III, the resulting interference can either enhance or
detract from the net surface-emitted second harmonic radiation.

By incorporating a second DBR above the QPM waveguide, a
vertical microcavity is formed, significantly altering the perfor-
mance. The total second harmonic radiation can be described by
the product of a base efficiency, defined as that obtained without
the resonant cavity, and a frequency-dependent enhancement
factor that results solely from the cavity. The frequency varia-
tion of the linear optical index and the nonlinear susceptibility

are small, and the QPM core is broadband due to the small
number of layers (typically ten or fewer); therefore, the net fre-
quency dependence is dominated by the cavity.

B. Base Efficiency

The base efficiency is calculated using a Green’s function
approach [2], [18], which allows the determination of the
single-pass second harmonic radiation from arbitrary nonlinear
source terms. The complex amplitude of the second-harmonic
electric field emitted toward the surface in the absence of a
microcavity is

(1)

where
propagation direction of the second harmonic radi-
ation, which is coincident with the epitaxial growth
direction;
free-space wave number for the second harmonic
radiation;

—complex permittivity;
spatially dependent nonlinear polarization;
wavenumber in the designated material which, in
general, is complex.

The second integral accounts for the phase accumulation of the
wave emitted by each source term to the top of the structure.
Equation (1) neglects the effects of the small reflections at the
interfaces of the multilayer structures used to achieve vertical
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QPM; however, these effects are small for AlGaAs waveguides.
Furthermore, we have verified the accuracy of (1) by compar-
ison to an exact transfer matrix calculation; indeed, the interface
reflections cancel for vertically symmetric structures.

The SESHG interaction is dependent on both the crystal
orientation and the polarization. The only nonzero elements of
the second-order susceptibility tensor for materials such
as AlGaAs are . Thus, the counter-propa-
gating fundamental fields must be cross-polarized in standard
[001]-oriented material with waveguide facets defined by
the 110 natural cleavage planes. However, it has been
shown that the optimum efficiency is obtained using TE-po-
larized fundamental fields in [112]-oriented material [19],
which maintains the important advantage of allowing the
waveguide facets to be defined by cleaving. In this case,

, where
and are the counter-propagating electric field strengths.
Note that the SESHG efficiency is sensitive to the polarization
of the fundamental pulses regardless of the material orientation.

The SESHG efficiency is often described in terms of a non-
linear cross-section , which relates the second-harmonic
area intensity to the line intensities of the counter-propa-
gating fundamentals [3], [20], [21]

(2)

The variation of the fundamental mode profile along the second
harmonic radiation propagation direction (vertical in Fig. 1) is
incorporated into the nonlinear cross-section . This allows
for comparison of different waveguide structures. Thus, the non-
linear cross-section is defined in terms of power via

(3)

where
overlap length defined either by the length of the
waveguide or, for short pulses, by the overlap length
of the fundamental pulses inside the waveguide;
width of the second harmonic radiation beam;
effective width of the fundamental waveguide mode.

can be calculated from the nonlinear polarization
and the material structure using (1). We note that some authors
normalize to an area of 1 mm 1 cm; however, this prac-
tice is not used here. Early nonlinear cross-section values re-
ported for non-QPM lithium niobate waveguides were on the
order of 10 [20], while more recent QPM AlGaAs
[3] and polymer structures [21] have been reported with non-
linear cross-sections above 10 for a fundamental wave-
length at 1.064 nm. A nonlinear cross-section of 10 at

m is desired for practical OTDM demultiplexing [5];
this level of performance is difficult to achieve at wavelengths
far from the band-gap resonance.

C. Cavity-Enhancement Factor

The frequency-dependent cavity-enhancement factor is
determined by calculating the total field outside the cavity
resulting from a single plane-wave source within the cavity

[22] that emits equally in both directions [15]. The net en-
hancement is obtained by integration over the spectral content
of the second harmonic radiation pulse. The enhancement
is , where is the
power spectrum of the second harmonic radiation transmitted
through the top of the microcavity and is the power
spectrum of the upward-propagating second harmonic radiation
generated in the absence of a microcavity.

In the short-pulse regime, the cavity significantly modifies
the temporal characteristics of the second harmonic radiation
pulse. Therefore, it is useful to describe the efficiency in terms
of pulse energies to facilitate comparison with experiment. The
base nonlinear cross-section for Gaussian pulses is

(4)

where
second harmonic radiation pulse energy;
counter-propagating fundamental pulse energies;
group velocity of the fundamental;

—a factor relating peak power and temporal
width to energy.

Inclusion of the cavity effects yields an effective cross-section
.

D. Numerical Implementation

A complete numerical model of microcavity SESHG has
been implemented to compare the expected SESHG spectrum
and efficiency to the experimental data for the structures
described below. The counter-propagating fundamental pulses
are described in the temporal domain by their field envelopes,
and the temporal shape of the generated second harmonic
radiation polarization is obtained by performing a convolution
between the two fundamental fields. The second harmonic
radiation polarization is then Fourier transformed, and the
spatial integration described in (1) is carried out numerically
for each frequency component to obtain the second harmonic
radiation signal that would be produced without a cavity. This
integral depends on the waveguide structure and on the vertical
mode profile of the fundamental, which is obtained using a
commercial software package based on a finite-difference
beam-propagation method. The frequency-dependent base
efficiency is then obtained from the calculated second
harmonic radiation field using (3). The cavity effects are
incorporated into the model by use of an iterative computa-
tion equivalent to (5), yielding the magnitude and phase of
the enhanced output second harmonic radiation field in the
frequency domain; the calculation incorporates the complex
reflectivities of the top and bottom mirrors, which are obtained
via a transfer-matrix approach. The total output power is then
evaluated by integrating the second harmonic radiation power
spectral density transmitted through the top mirror. Comparison
with the nonenhanced second harmonic radiation power yields
the total enhancement factor. Since the spectral phase is
included at every step of the calculation, the temporal envelope
of the second harmonic radiation signal can be obtained by
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applying an inverse Fourier transform to the second harmonic
radiation field spectrum. The assumed values used in the
simulations are 75 pm/V for Al Ga As, and 18 pm/V for
Al Ga As [23], [24].

III. A NALYSIS OF RESONANT CAVITY ENHANCEMENT

A. General Resonant Cavity Enhancement Factor

Resonant cavity enhancement of SHG was first discussed by
Ashkin,et al., in the collinear geometry [22]. Here, we present
a formulation for the surface-emitting geometry that yields the
cavity enhancement as a function of frequency, inherently incor-
porating the spectral filtering effect of the cavity. We note that
a similar approach was taken in [14]; however, here we explic-
itly include both the upward and downward propagating compo-
nents of the second harmonic radiation, which correctly predicts
the interferometric behavior described below in Section V-B. As
shown in Fig. 2, the net second-harmonic field generated in the
QPM core is treated as a lumped element positioned inside the
cavity, allowing the enhancement factor from the cavity to be
easily identified. As stated above, the net enhanced efficiency is
the product of the cavity enhancement factor and the base effi-
ciency.

The analysis is similar to that of a standard Fabry–Perot
cavity, except that the field is generated inside the cavity rather
than being transmitted through it. Equal-amplitude second
harmonic radiation fields are generated in both the upward- and
downward-propagating directions due to symmetry. The total
second-harmonic field complex amplitud at a distance
from the bottom mirror is then given by

(5)

where
upward-propagating second harmonic radiation gen-
erated in the absence of a cavity;

, complex field reflectivities of the mirrors;

power loss coefficient;

distance between the mirrors.

Fig. 2. Simplified cavity used to develop the general theory of resonant
cavity enhancement. The mirrors are separated by a distanced, and the second-
harmonic source is lumped into a single planar emitter at distancel above
the lower mirror. By symmetry, equal amounts of second-harmonic light are
radiated up and down.

Thus, the steady-state second-harmonic field takes the form of
a pair of geometric series, and using can be
written

(6)

The second-harmonic field amplitude transmitted through the
top mirror is

(7)

and using , where is the impedance
of free space, the second harmonic radiation intensity trans-
mitted through the top mirror is

(8)

We have assumed normal incidence so that
, where is the refractive index inside the cavity and is

the index of the medium above the top mirror. Furthermore, we
have identified as the upward-propagating second harmonic
radiation intensity generated in the absence of the cavity

(9)

Defining the complex mirror reflectivities as and
, the enhancement factor due to the resonant cavity

is then found to be as in (10), shown at the bottom of the page,
where is power. The frequency dependence of the enhance-
ment factor is contained in the wave number , and
also in the phase shifts from the mirrors. Reviewing the assump-
tions that led to (10), is the power enhancement at normal in-

(10)
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cidence for a single plane-wave source emitting equally in both
directions and positioned inside a cavity at a distancefrom the
bottom mirror. Microcavity-enhanced SESHG is completely de-
scribed by (10) together with (1).

The form of (10) is reminiscent of the Fabry–Perot transmis-
sion function [25], although the numerator is more complicated
because there are now equal and opposite second harmonic ra-
diation field components generated inside the cavity rather than
a single wave transmitted through it. Cavity resonances occur
at frequencies where the single-pass phase shift in the cavity,
given by , is an integral multiple of .
Constructive interference of the two second harmonic radiation
components also requires positioning of the second harmonic
radiation source such that is an integral multiple of

. Note that for properly designed cavities, both conditions are
satisfied and the standing wave peaks are centered in the core
layers. High reflectivities and minimal absorption are required
for large enhancements.

B. The CW Limit

For quasi-CW light, the optical bandwidth is small compared
to the width of the cavity resonance. The enhancement factor
given by (10) can then be taken in the single-frequency reso-
nance limit, where the sine terms can be made exactly zero and
no integration over frequency is needed. Specifically

(11)

Implicit in (11) is the assumption that the nonlinear layers have
been properly positioned inside the cavity so that constructive
interference between the source and subsequent reflections is
assured. In the lossless limit, there is no penalty for increasing
the reflectivities as much as possible; however, this is not true
for cavities with loss, as will be discussed below. As an example,
assuming and , the CW power enhancement
reduces to

(12)

Thus, if %, the CW enhancement is1600.
This is identical to the collinear result [22], with the exception
of an extra factor of four resulting from the coherent addition of
the two emitted second harmonic radiation field components.

C. Enhancement From Bottom Mirror Alone

The absence of a top mirror relieves the requirement of
matching the cavity resonance to the desired wavelength. This
simple structure, with a reduced enhancement, may have use in
less demanding applications. Using (10) with in the
limit where and , the enhancement is given by

(13)

Thus, for a specific second harmonic radiation frequency, the
second harmonic radiation source may be positioned such that

Fig. 3. Intensity distribution of adjacent longitudinal modes of the resonant
cavity. Overlap with the high-� layers is optimized for themth mode; the
(m+1)th mode has nodes at or near center of the high-� layers, resulting in
low second-harmonic conversion efficiency.

the reflection returns to the source with a round-trip phase shift
equal to an integer multiple of [e.g., when ,
where is an integer, and ], resulting in an enhancement
of four. Similarly, complete destructive interference occurs for
round-trip phase shifts that are odd multiples of. Experimental
confirmation of this effect is presented in Section V. The net en-
hancement for a broadband pulse is not significantly reduced
for most practical cases; significant reduction of the enhance-
ment occurs only for very short pulses or large. For the exper-
imental microcavity structures ( ) and second harmonic
radiation pulse widths characterized in this work (100 fs), the
theoretical enhancement due to the bottom mirror alone is al-
ways greater than 3.7. Similarly, we note that although the exact
phase matching condition can only be maintained for a single
frequency, the variation is negligible compared to the influence
of the cavity.

D. Constructive and Destructive Microcavity Resonances

The interference effects become increasingly important when
the vertical cavity is completed by the addition of a top DBR. As
with any optical cavity, resonances occur at frequencies where
the round-trip phase shift is an integral multiple of. Ne-
glecting phase shifts at the mirrors, this condition is met when
the optical path length between the mirrors corresponds to an
integral number of half-wavelengths. For the microcavities con-
sidered here, the number of half wavelengths is relatively small
(5–30) and care must be taken to ensure proper excitation of
the cavity modes. This situation is differentiated from that en-
countered in larger cavities with narrow mode spacing and with
uniform gain media. It is also differentiated from VCSEL cavi-
ties with narrow quantum-well gain regions, which are typically
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designed with very small cavities so that they operate in a lower
order mode (typically 1- cavities).

The standing waves associated with the cavity resonances
are shown for two adjacent resonances in Fig. 3, where a res-
onance with half-wavelengths is designated theth longitu-
dinal mode of the cavity. Note that two adjacent modes have ex-
actly the opposite standing wave distribution at the center of the
cavity, where the fundamental mode intensity is largest; specif-
ically, if the th mode has a peak at the center of the cavity,
the ( )th mode has a node. This has a dramatic effect on
the SESHG efficiency. The QPM layers in an SESHG structure
are designed to be a half-wavelength thick at the second har-
monic radiation wavelength and can, therefore, be positioned
so that the standing wave peaks occur at the center of each of
the high- layers of the QPM region. This positioning pro-
duces constructive interference between the reflected second
harmonic radiation and newly generated second harmonic ra-
diation in the core, resulting in enhanced efficiency. However,
at the adjacent cavity resonances, corresponding to , the
standing waves have nodes at or near the center of each of the
high- layers of the QPM region, producing destructive inter-
ference of the second harmonic radiation and low net conversion
efficiency. Thus, when the th mode has a peak at the center
of the cavity, the modes have standing wave peaks ap-
proximately centered in the high- QPM layers, and a peak
at the center of the cavity. Thus, constructive interference and
high second harmonic radiation efficiency occur only for every
other cavity resonance, and maximum efficiency occurs at the
design wavelength of the QPM layers. Note that Fig. 3 depicts
a QPM core with only two high layers; however, efficient
structures typically incorporate more than two layers with a high

layer in the center of the cavity where the fundamental in-
tensity is highest.

The vertical microcavities considered here have dimensions
of up to a few microns, resulting in adjacent cavity resonances
spaced by 20 nm for second harmonic radiation near 775 nm.
The penetration into the DBRs accounts for up to 50% of the
total effective cavity dimension, significantly limiting the min-
imum effective cavity height. The high-reflectance bandwidth
of the DBRs is 50 nm in this region by the moderate index
contrast achievable in AlGa As DBRs; these structures can,
therefore, support up to three cavity resonances, with only every
other resonance providing constructive SHG. In practice, the
structure is designed for a single wavelength near the center of
the DBR peak.

E. Cavity Enhancement for Short Pulses: Spectral Filtering

The frequency dependence of the cavity enhancement must
be incorporated for short pulses with significant bandwidth. In
this case, the total output power is obtained by integrating over

(14)

where is the power spectrum of the nonenhanced second
harmonic radiation pulse. The importance of the spectral fil-
tering effect of the cavity can be understood by noting that the
second harmonic radiation spectral width for Gaussian trans-
form-limited 1-ps, 1.55-m fundamental pulses is 1.25 nm,

Fig. 4. Normalized enhancement for an ideal cavity with no absorption and
lower mirror reflectance= 100%. Fundamental pulses are assumed to be 200-fs
long and transform-limited. The enhancement increases monotonically with the
top reflectance, and larger enhancements are obtained for smaller cavities.

which is comparable to the resonance width of a 20-
cavity with a finesse 30. Even with this low-finesse cavity,

the spectral filtering must clearly be incorporated.
For practical cavities ( , nonzero ), the cavity param-

eters must be optimized for maximum second harmonic radia-
tion efficiency. For surface-emitting devices, the bottom mirror
reflectance should be the largest practically achievable value.
Real losses associated with absorption and scattering inside the
cavity as well as the effective loss of light transmitted through
the bottom mirror result in an efficiency penalty for top re-
flectances beyond the optimum value. For a given cavity height
and bottom reflectance, the top mirror reflectance can be opti-
mized for a particular pulse spectrum and effective absorption.

The cavity height plays an interesting role in this optimiza-
tion. The peak enhancement at the resonant frequency increases
with the finesse, which is independent offor cavities without
absorption. In contrast, the spectral width of the resonance is in-
versely proportional to [26] and, therefore, a wider resonance
is obtained in a smaller cavity. Thus, for a given pair of mirror
reflectances (i.e., a given finesse), the spectral overlap of the res-
onance and the power spectrum of the nonenhanced second har-
monic radiation pulse is increased in a smaller cavity, resulting
in a larger net enhancement. In order to better accommodate a
large pulse spectrum for short-pulse operation, it is therefore de-
sirable to make the cavity as small as possible [27]. The benefit
of smaller cavities is further quantified via numerical analysis
in Section IV.

F. Ideal Cavities

Before turning to the optimization of realizable cavities, we
consider the effects of various cavity and pulse parameters sepa-
rately. Specifically, we examine the effects of cavity size, pulse
width, and a nonideal bottom mirror. We first examine the ef-
fect of cavity size by considering the idealized case where the
bottom mirror has a reflectance of 1.0 and the cavity absorp-
tion is zero. The enhancement for 200-fs fundamental pulses is
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Fig. 5. Total resonant cavity enhancement as a function of transform-limited
pulse width for an ideal lower mirror and no loss inside the cavity. Although
the spectral width of the pulse may exceed the cavity resonance width, there
is no optimum cavity finesse, i.e., increasing reflectivity always improves the
enhancement. Note that for the cavity dimensions shown, the CW limit is
approached for pulse widths exceeding 10 ps.

calculated via (14) and normalized to the case where the top re-
flectance is zero. The results are shown in Fig. 4 as a function of
top mirror reflectance for four different cavity sizes. As de-
scribed above, the enhancement factor is larger for smaller cav-
ities. Note also that for each cavity, the enhancement factor in-
creases monotonically with the top reflectance. In other words,
as the cavity finesse is increased, the enhancement near the reso-
nance peak increases faster than the enhancement of the spectral
wings decreases. Thus, for a cavity with a perfectly reflecting
bottom mirror and no absorption, there isnot an optimum top
reflectance; a larger enhancement factor is always obtained for
a higher top reflectance as long as is not identically 100%.

The absence of an optimum top reflectance is also seen in
Fig. 5, where the normalized cavity enhancement is shown as a
function of pulse width for transform-limited Gaussian pulses.
The spectral filtering effect of the cavity is apparent in the re-
duced enhancement for short pulses. Note that for longer pulse
widths, the enhancement approaches the CW limit. Of impor-
tance is that when the bottom reflectance is unity, higher top
reflectance results in a larger enhancement for all pulse widths.

In contrast, a nonideal bottom mirror acts as a source of loss
in the cavity, resulting in the existence of an optimum top re-
flectance for a given pulse width. Thus, for any practical cavity
where the bottom mirror has a reflectance of less than unity,
there is an optimum value of top reflectance. The effect of a
nonideal bottom mirror is shown in Fig. 6, where the normal-
ized enhancement is again calculated via (14) assuming 200-fs
Gaussian fundamental pulses. Note that the enhancement drops
sharply once the optimum top reflectance is exceeded. Because
the cavity absorption is assumed to be zero and the second har-
monic radiation power spectrum is assumed to be constant, this
sharp drop is due only to light escaping through the bottom
mirror. As will be seen in Section IV, absorption and scattering
losses inside the cavity produce a similar effect.

Fig. 6. Normalized enhancement for cavities with nonideal lower mirrors.
Fundamental pulses are assumed to be 200-fs long and transform limited. In
this case, there is an optimum cavity finesse that depends upon the cavity
height and the mirror reflectances.

IV. CAVITY OPTIMIZATION FOR SHORT PULSES

In general, the enhancement of second harmonic radiation ef-
ficiency due to the resonant cavity is a function of the mirror
reflectances, the absorption loss, and the spectral content of the
nonenhanced second harmonic radiation pulse. To investigate
the tradeoffs in practical structures, a numerical optimization
of the top mirror reflectance based on (14) has been imple-
mented. The bottom mirror is an AlGaAs DBR with a power
reflectance of 99% so that most of the second harmonic radi-
ation is emitted through the top mirror rather than into the sub-
strate; it is optimally positioned for coherent reflection of the
second harmonic radiation. The round-trip phase shift includes
the penetration depth into the Bragg reflectors [28], which can
be large for low-contrast mirrors. For simplicity, the refractive
index and are assumed to be constant. The number of top
DBR layers is then varied, and enhancement curves are calcu-
lated for several different values of cavity loss.

Results are shown in Fig. 7 for cavities with
[Fig. 7(a) and (b)] and [Fig. 7(c) and (d)] for
a 1.55- m fundamental wavelength. The larger cavity has a
dielectric top DBR, while the smaller cavity has an AlGaAs
top DBR. Fundamental pulse widths of 1.0 ps and 200 fs are
selected, resulting in nonenhanced second harmonic radiation
bandwidths of 1.25 and 6.25 nm, respectively. The results are
normalized to the case where , and thus the total cavity
enhancement is up to a factor of four larger than indicated.

Several trends are evident in Fig. 7. For a given cavity [i.e.,
comparing Fig. 7(a)–(d)], longer transform-limited pulses ex-
perience a larger enhancement, because a larger fraction of the
second harmonic radiation spectrum is contained within the res-
onance width. The optimum top reflectance decreases slightly
with decreasing pulse width, due to the increasing spectral con-
tent of the nonenhanced second harmonic radiation spectrum
contained within the resonance width. The second harmonic ra-
diation spectrum of the 1-ps pulse is peaked at the center fre-
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(a) (b)

(c) (d)

Fig. 7. Calculated resonant enhancement of second-harmonic power as a function of top mirror reflectance for two pulse widths and two cavity lengths.(a) 1-ps
FWHM fundamental pulses in a 20-�=2n cavity. (b) 200-fs pulses in a 20-�=2n cavity. (c) 1-ps pulses in a 5-�=2n cavity. (d) 200-fs pulses in a 5-�=2n cavity.
The cavity absorption is given by�d. All results are normalized to the case where the top mirror reflectance is zero, and thus the total enhancement is up to a factor
of four larger.

quency of the resonance, while the spectrum of the 200-fs pulse
is approximately constant across the width of the resonance;
thus, the optimum resonance width is slightly narrower for the
1-ps pulse, corresponding to higher reflectance. With a 99.9%
reflectance bottom DBR and a 20- cavity with no ab-
sorption, the optimum top reflectance is 98.4% for 1-ps funda-
mental pulses and 96.5% for 200-fs fundamental pulses, with
corresponding normalized enhancements of 20.9 and 4.5, re-
spectively.

Trends related to the cavity size and absorption are also
evident in Fig. 7. As discussed in Section III-D, a larger en-
hancement is obtained for a smaller cavity with the same mirror
reflectances, because bringing the mirrors closer together
increases the spectral width of the resonance. This effect can be
seen by comparing Fig. 7(a)–(c) (1-ps pulses), and Fig. 7(b)–(d)
(200-fs pulses). With 1-ps fundamental pulses, the normalized
enhancement is 20.9 for the 20- cavity and 28.7 for the
5- cavity; with 200-fs pulses, the corresponding en-
hancements are 4.5 and 6.7, respectively. The large penetration
depth in the low-contrast AlGaAs DBRs presents a limitation;
for the structures with AlGaAs DBRs in Fig. 7(c) and (d),
the penetration depth is comparable to the mirror separation,
and thus the full benefit of a smaller cavity is not realized.
Clearly, structures with increased vertical confinement of the

second harmonic radiation (e.g., using AlO /AlGaAs DBRs
[14]) will result in even larger enhancements. Furthermore,
the optimum value of top mirror reflectance decreases as the
cavity absorption increases, because the second harmonic
radiation experiences more loss as it makes more round trips
in a higher-reflectance cavity. The cavity becomes detrimental
when the absorption length is comparable to the mirror sep-
aration , and thus minimization of absorption is critical to
efficient performance. The theoretical results presented in
Fig. 7(b) are compared to experimental results in Section V-C.

V. EXPERIMENTAL RESULTS

A. Rear-Facet Reflection Geometry

A simple technique for measuring SESHG efficiency and
spectra is shown in Fig. 8. The fundamental pulse source is an
optical parametric oscillator (OPO) tunable from 1400 to 1600
nm, producing 200-fs pulses. A single fundamental pulse is
launched into the waveguide and allowed to propagate down
its entire length. The Fresnel reflection at the rear facet of
the waveguide creates a counter-propagating signal, and thus
SESHG is generated by the fundamental pulse reflecting back
on itself. This configuration is referred to as the rear-facet
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Fig. 8. Rear-facet reflection geometry for characterizing SESHG in the micro-
cavity structure. A portion of the fundamental is reflected at the rear facet,
folding the pulse back on itself, thereby creating the required collision geometry.
The surface-emitted second harmonic is collected above the waveguide using an
optical fiber.

reflection geometry. For efficiency measurements, the funda-
mental power transmitted though the waveguide is detected
with an InGaAs p-i-n photodetector; measuring the transmitted
power rather than the power at the waveguide input eliminates
uncertainties associated with input coupling and propagation
loss. The SESHG is collected with a 200-m core optical fiber
positioned above the rear facet, and detected with a silicon
avalanche photodetector. The effective nonlinear cross-section
can then be calculated using (4); note that in
this case, and the calculated must be multiplied by an
additional factor of two because only half of the autocorrelation
is generated in the rear-facet reflection geometry. The SESHG
power spectrum is obtained using the same technique.

B. Interference

As discussed in Section III-C, the reflected downward-prop-
agating component acquires a phase shift relative to the up-
ward-propagating component due to the extra propagation dis-
tance and also due to the reflection at the DBR. Because the two
components of the second harmonic radiation originate from the
same nonlinear source, they are inherently coherent with each
other. Thus, maximum SESHG is produced when the relative
phase between the upward-propagating and reflected compo-
nents is a multiple of . Cancellation occurs when the phase
shift is an odd multiple of , with power being transferred back
to the fundamental.

Experimental confirmation of this interferometric behavior
is shown in Fig. 9, where the measured SESHG power as a
function of input wavelength is shown for two nearly identical
AlGaAs structures without top mirrors. Each structure was
grown by molecular-beam epitaxy (MBE), and consists of a
4.5-period Al Ga As/Al Ga As QPM waveguide
core, Al Ga As lower and upper cladding layers, and
a 33-period Al Ga As/AlAs bottom DBR designed for
a reflectance of 99.9%. The key difference between the two
structures is that the thickness of the cladding layers for the
structure in Fig. 9(b) is specified to be larger by a factor
of at the center DBR wavelength. Thus, the reflected
downward-propagating second harmonic radiation experiences

(a)

(b)

Fig. 9. Measured surface-emitted second-harmonic signal as a function of
fundamental wavelength showing that every other cavity resonance is active
for SESHG. The reflectance of the as-grown SESHG wafer is also shown.
Interference between the upward-radiating and reflected downward-radiating
components results in the strong wavelength dependence. The structure in
(b) has a lower cladding layer that is a quarter-wave thicker than the structure
in (a), resulting in an extra round-trip phase shift�� of � for the reflected
component, shifting the wavelength dependence of the total SESHG signal.

an additional phase shift of approximatelyas compared to
the one in Fig. 9(a).

In Fig. 9, the second harmonic radiation signal as a func-
tion of OPO center wavelength is plotted together with the mea-
sured reflectance of the epitaxial layers. The reflectance is domi-
nated by the broad high-reflectance peak of the DBR beneath the
waveguide. The second harmonic radiation efficiency is a strong
function of wavelength, as expected for an interferometric ef-
fect. Also shown for the second harmonic radiation peaks and
nulls in the figure are the round-trip phase shifts from the center
of the bottom high- layer to the DBR, which are deter-
mined from the design parameters. The absolute wavelengths
of the corresponding peaks and nulls for the two structures do
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Fig. 10. Measured and predicted microcavity enhancement of SESHG
efficiency for 200-fs fundamental pulses in a 20-�=2 cavity. The estimated
cavity loss is�d = 0:15 to 0.2, corresponding to an absorption coefficient of
� = 600 cm .

not match exactly; this is attributed to a small systematic dis-
crepancy in the MBE growth rate. However, the expected shift
of the second harmonic radiation behavior relative to the DBR
center wavelength due to the extraphase shift is observed,
and the large extinction ratio confirms that the bottom DBR is
highly reflective.

C. Enhancement as a Function of Reflectance

Several 20- microcavity structures were fabricated
and characterized for comparison with the theory presented
above [29], [30]. The [112] AlGaAs SESHG structure was
grown by MBE, and includes a 99.9% reflectance bottom
DBR, Al Ga As cladding layers, and a nine-layer
Al Ga As–Al Ga As QPM core. Six samples
were fabricated, each containing tens of waveguides, and a
different reflectance top DBR was deposited on each sample.
One sample was coated with a single quarter-wave SiN
antireflection coating ( %) to serve as the efficiency
reference. Another sample was left without any dielectric
coating to make use of the 26% Fresnel reflection at the top
Al Ga As-air interface. Dielectric DBRs with 1, 2, 4, and
8 pairs of quarter-wave layers were deposited onto the four
remaining samples. By comparing the measured efficiencies for
the five samples with top mirrors to the AR-coated reference
sample, the enhancement was obtained as a function of top
mirror reflectance. Several waveguides on each sample were
characterized, and the measured efficiencies averaged to arrive
at the final enhancement.

The measured cavity enhancement is shown in Fig. 10 along
with the theoretical predictions. As expected, the efficiency
increases with the top reflectance until the loss in the cavity
and the filtering of the broad pulse spectrum outweigh the
enhancement at the resonance. The maximum enhancement
is a factor of 2.2 relative to the AR-coated reference sample,
and thus the total cavity enhancement is approximately a factor
of 8.8. Exact numbers for the measured enhancement are
2.2 (normalized) and 8.8 (total). The measured enhancement

indicates that the single-pass cavity loss,, is on the order
of 0.15–0.20, corresponding to an of 600 cm , resulting
in a single-pass transmission of84% through the material
between the mirrors. This loss may be due to both scattering
and residual band-to-band absorption, and represents a critical
parameter for the performance of the resonant cavity. Clearly,
intracavity loss must be reduced to achieve the optimum
enhancement.

As shown in Fig. 11, the performance of the microcavity is
also verified by the SESHG spectra collected above the rear
waveguide facet, plotted along with the corresponding numer-
ical results. The spectral width clearly decreases as the top re-
flectance increases, confirming that the microcavity behaves as
expected. Resonant enhancement is verified by the fact that the
efficiency relative to the AR-coated sample is increased while
the SESHG spectral width is reduced. In addition, the intra-
cavity loss inferred from the observation of the spectral reso-
nance width is in good agreement with the value obtained from
the cavity enhancement ( ).

The measured nonlinear cross-section for the AR-coated
sample is W , while the theory predicts

W . This discrepancy may be attributed
to the sensitive dependence on the fundamental power. Stray
fundamental light not coupled into the waveguide mode but
still collected by the photodetector reduces the by the
square of the fundamental power. For the same structure with
a four-period top DBR and negligible loss, the theoretical
optimum nonlinear cross-section for 1-ps fundamental pulses
is W , which is more than sufficient for
OTDM. Up to an additional order of magnitude improvement
is potentially possible via a combination of increased confine-
ment (reduced DBR penetration), smaller cavities [27], and
domain-inverted material [31], [32].

VI. CONCLUSION

We have shown that the incorporation of a vertical micro-
cavity resonant at the second harmonic radiation wavelength
can greatly enhance the SESHG efficiency, even for short pulses
with bandwidth that exceeds the cavity resonance width. The
bottom mirror alone provides up to a factor of four enhance-
ment; in the absence of loss, the full cavity can provide a total
enhancement of 100 for 1-ps pulses and1000 in the CW
limit. For the same mirror reflectances, the resonance width is
increased by decreasing the cavity size, increasing the enhance-
ment. While the spectral filtering effect is more than compen-
sated by the on-resonance enhancement in an ideal, lossless
cavity with a perfect bottom mirror, optimization of the mirror
reflectances with respect to the cavity loss and the spectral con-
tent of the pulse is required in practical structures. Loss within
the cavity limits the maximum achievable enhancement, and
must be minimized in order for the full benefit of the cavity to
be realized.

Experimentally, we have demonstrated resonant cavity
enhancement of SESHG from a 200-fs, 1.5-m fundamental
pulse using a 20- vertical microcavity incorporated into a
quasi-phase-matched AlGaAs structure. We have also shown
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Fig. 11. Measured SESHG spectra (solid lines) plotted together with the numerically computed spectra (dotted lines) for a range of cavity finesse. The numerical
computations use a fixed cavity loss (�d = 0:14) and vary only the top mirror reflectivity. The proper scaling of the numerical and measured spectra demonstrates
the validity of the theory.

that only every other cavity resonance can contribute to con-
structive SESHG because the nonlinear source is located within
the cavity. A peak cavity enhancement of two is measured
relative to an AR-coated reference sample, implying a total
enhancement of eight; thus, the cavity is clearly beneficial
despite the large spectral width of the pulse and the excess
loss in the cavity. Significantly larger enhancements are ex-
pected in cavities with reduced loss. The maximum nonlinear
cross-section for 200-fs pulses measured in this work is 3.2

10 W ; if material losses can be controlled, nonlinear
cross-sections in excess of 10W should be achievable for
1-ps fundamental pulses, enabling device applications such as
OTDM.

REFERENCES

[1] K. A. Shore, X. Chen, and P. Blood, “Frequency doubling and sum fre-
quency generation in semiconductor optical waveguides,”Prog. Quant.
Electr., vol. 20, no. 3, pp. 181–218, 1996.

[2] D. Vakhshoori and S. Wang, “Integrable semiconductor optical corre-
lator, parametric spectrometer for communication systems,”J. Light-
wave Technol., vol. 9, pp. 906–917, July 1991.

[3] R. Normandin, S. Létourneau, F. Chatenoud, and R. L. Williams,
“Monolithic, surface-emitting, semiconductor visible lasers and spec-
trometers for WDM fiber communication systems,”IEEE J. Quantum
Electron., vol. 27, pp. 1520–1530, June 1991.

[4] R. K. Tan, C. M. Verber, and A. J. SpringThorpe, “Self-timed integrated-
optical serial-to-parallel converter for 100 Gbit/s time demultiplexing,”
IEEE Photon. Technol. Lett., vol. 6, pp. 1228–1230, Oct. 1994.

[5] T. G. Ulmer, M. C. Gross, K. M. Patel, J. T. Simmons, P. W. Juodawlkis,
B. R. Washburn, W. S. Astar, A. J. SpringThorpe, R. P. Kenan, C. M.
Verber, and S. E. Ralph, “160-Gb/s optically time-division multiplexed
link with all-optical demultiplexing,”J. Lightwave Technol., vol. 18, pp.
1964–1977, Dec. 2000.

[6] M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasiphase-
matched second harmonic generation: Tuning and tolerances,”IEEE J.
Quantum Electron., vol. 28, pp. 2631–2654, Nov. 1992.

[7] G. Imeshev, M. Proctor, and M. M. Fejer, “Phase correction in
double-pass quasiphase-matched second-harmonic generation with a
wedged crystal,”Opt. Lett., vol. 23, no. 3, pp. 165–167, Feb. 1, 1998.

[8] M. A. Arbore, A. Galvanauskas, D. Harter, M. H. Chou, and M. M. Fejer,
“Engineerable compression of ultrashort pulses by use of second-har-
monic generation in chirped-period-poled lithium niobate,”Opt. Lett.,
vol. 22, no. 17, pp. 1341–1343, Sept. 1, 1997.

[9] M. H. Chou, I. Brener, G. Lenz, R. Scotti, E. E. Chaban, J. Shmulovich,
D. Philen, S. Kosinski, K. R. Parameswaren, and M. M. Fejer, “Efficient
wide-band and tunable midspan spectral inverter using cascaded nonlin-
earities in LiNbO waveguides,”IEEE Photon. Technol. Lett., vol. 12,
pp. 82–84, Jan. 2000.

[10] R. Normandin, R. L. Williams, and F. Chatenoud, “Enhanced surface
emitting waveguides for visible, monolithic semiconductor laser
sources,”Electron. Lett., vol. 26, no. 25, pp. 2088–2089, Dec. 6, 1990.

[11] R. Lodenkamper, M. M. Fejer, and J. S. Harris, Jr., “Surface emitting
second harmonic generation in vertical resonator,”Electron. Lett., vol.
27, no. 20, pp. 1882–1884, Sept. 26, 1991.

[12] R. Lodenkamper, M. L. Bortz, M. M. Fejer, K. Bacher, and J. S. Harris,
Jr., “Surface-emitting second-harmonic generation in a semiconductor
vertical resonator,”Opt. Lett., vol. 18, no. 21, pp. 1798–1800, 1993.

[13] Y. J. Ding, J. B. Khurgin, and S. J. Lee, “Cavity-enhanced and
quasiphase-matched optical frequency doublers in surface-emitting
geometry,”J. Opt. Soc. Amer. B, vol. 12, no. 9, pp. 1586–1594, Sept.
1995.

[14] S. Janz, Y. Beaulieu, A. Fiore, P. Bravetti, V. Berger, E. Rosencher, and J.
Nagle, “Surface emitted second-harmonic generation from a quasiphase
matched waveguide in an AlGa As/Al O microcavity,”Opt. Exp.,
vol. 2, no. 12, pp. 462–470, June 1998.

[15] D. Vakhshoori, “Analysis of visible surface-emitting second-harmonic
generators,”J. Appl. Phys., vol. 70, no. 10, pp. 5205–5210, Nov.
1991.

[16] R. Normandin and G. I. Stegeman, “Picosecond signal processing with
planar, nonlinear integrated optics,”Appl. Phys. Lett., vol. 36, no. 4, pp.
253–255, Feb. 1980.

[17] N. D. Whitbread and P. N. Robson, “Theoretical analysis of passive vis-
ible surface-emitting second-harmonic generators,”IEEE J. Quantum
Electron., vol. 30, pp. 139–147, Jan. 1994.

[18] R. Normandin, H. Dai, S. Janz, F. Chatenoud, C. Fernando, Y. Beaulieu,
and A. Delâge, “Longitudinal and vertical emission laser integration
with quasi phase matched harmonic layers,”Proc. SPIE, vol. 2139, pp.
296–308, 1994.



30 IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 38, NO. 1, JANUARY 2002

[19] P. A. Ramos and E. Towe, “Second-order nonlinear polarization and
harmonic generation in [11l]-oriented III–V heterostructures,”Opt.
Commun., vol. 132, no. 1–2, pp. 121–127, Nov. 1996.

[20] R. Normandin and G. I. Stegeman, “Nondegenerate four-wave mixing
in integrated optics,”Opt. Lett., vol. 4, no. 2, pp. 58–59, Feb. 1979.

[21] A. Otomo, G. I. Stegeman, M. C. Flipse, M. B. J. Diemeer, W. H. G.
Horsthuis, and G. R. Möhlmann, “Nonlinear contrawave mixing devices
in poled-polymer waveguides,”J. Opt. Soc. Amer. B, vol. 15, no. 2, pp.
759–772, Feb. 1998.

[22] A. Ashkin, G. D. Boyd, and J. M. Dziedzic, “Resonant optical second
harmonic generation and mixing,”IEEE J. Quantum Electron., vol.
QE-2, pp. 109–124, June 1966.

[23] I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale
of second-order nonlinear-optical coefficients,”J. Opt. Soc. Amer. B, vol.
14, no. 9, pp. 2268–2294, Sept. 1997.

[24] R. Normandin, H. Dai, S. Janz, F. Chatenoud, C. Fernando, Y. Beaulieu,
and A. Delâge, “Longitudinal and vertical emission laser integration
with quasi phase matched harmonic layers,”Proc. SPIE, vol. 2139, pp.
296–308, 1994.

[25] M. Born and E. Wolf,Principles of Optics, 6th ed. Cambridge, U.K.:
Cambridge Univ. Press, 1980, pp. 323–333.

[26] J. T. Verdeyen,Laser Electronics, 3rd ed. Englewood Cliffs, NJ: Pren-
tice-Hall, 1995, p. 151.

[27] T. G. Ulmer, M. Hanna, B. R. Washburn, C. M. Verber, S. E. Ralph,
and A. J. SpringThorpe, “Microcavity-enhanced surface-emitted
second-harmonic generation from 200 fs pulses at 1.5�m,” Appl. Phys.
Lett., vol. 78, no. 22, pp. 3406–3408, May 28, 2001.

[28] D. I. Babic and S. W. Corzine, “Analytic expressions for the reflection
delay, penetration depth, and absorptance of quarter-wave dielectric mir-
rors,” IEEE J. Quantum Electron., vol. 28, pp. 514–524, Feb. 1992.

[29] T. G. Ulmer, B. R. Washburn, C. M. Verber, S. E. Ralph, and A. J.
SpringThorpe, “Resonant-cavity-enhanced surface-emitted second-har-
monic generation optimized for short pulses,”Proc. Ultrafast
Electronics and Optoelectronics Conf., pp. 42–44, 2001.

[30] T. G. Ulmer, B. R. Washburn, A. J. SpringThorpe, C. M. Verber, and
S. E. Ralph, “Microcavity-cavity-enhanced surface-emitted second-har-
monic generation for signal processing in the ps and fs regimes,” inUl-
trafast Phenomena XII, T. Elsaesser, Ed. New York: Springer, 2000,
pp. 189–191.

[31] S. Koh, T. Kondo, T. Ishiwada, C. Iwamoto, H. Ichinose, H. Yaguchi,
T. Usami, Y. Shiraki, and R. Ito, “Sublattice reversal in GaAs/Si/GaAs
(100) heterostructures by molecular beam epitaxy,”Jpn. J. Appl. Phys.,
pt. 2, vol. 37, no. 12B, pp. L1493–L1496, Dec. 15, 1998.

[32] C. B. Ebert, L. A. Eyres, M. M. Fejer, and J. S. Harris, Jr., “MBE growth
of antiphase GaAs films using GaAs/Ge/GaAs heteroepitaxy,”J. Cryst.
Growth, vol. 210/202, pp. 187–193, 1999.

Todd G. Ulmer was born in 1970. He received the
B.S. degree in physics (magna cum laude) from
Furman University, Greenville, SC, in 1993, the
B.E.E. degree (with highest honors) in 1994, and
the M.S. and Ph.D. degrees in electrical engineering
in 1996 and 2000, all from Georgia Institute of
Technology (Georgia Tech), Atlanta.

From 1993 to 2000, he was a member of the
Ultrafast Optical Communications group, Georgia
Tech’s Microelectronics Research Center. His
dissertation research involved an integrated-optical

serial-to-parallel converter for optical time-division demultiplexing that
utilizes microcavity-enhanced surface-emitted second-harmonic generation in
semiconductor waveguides. In 2001, he joined the Optical Communications
Technology Group at Massachussetts Institute of Technology’s (MIT) Lincoln
Laboratory, Cambridge, MA, where he is presently investigating wide-band
analog optical links, fiber Bragg gratings, and polarization controllers. His
research interests also include optical time-division multiplexing, nonlinear
optics in semiconductors and optical fiber, integrated optical devices, and
optical switching.

Dr. Ulmer was the recipient of a Schlumberger Foundation Fellowship and a
2000 SAIC Student Paper Award. He is a member of Phi Beta Kappa, Eta Kappa
Nu, Tau Beta Pi, the IEEE Lasers and Electro-Optics Society, and the Optical
Society of America.

Marc Hanna was born in 1974. He received the
engineering degree from the Institut National des
Telecommunications, Evry, France, in 1996, and
the Ph.D. degree in electrical engineering from the
Universite de Franche Comte, Besancon, France, in
2000.

He is currently with the GTL-CNRS Telecom lab-
oratory, Metz, France. His research interests include
optical solitons, ultrafast optics, and optical telecom-
munication systems.

Brian R. Washburn was born in Racine, WI, in
1972. He received the B.S. degree (summa cum
laude) from the University of Wisconsin-Parkside
in 1994. He is currently working toward the
Ph.D. degree in physics at the Georgia Institute of
Technology (Georgia Tech), Atlanta, with his thesis
research focusing on supercontinuum generation in
microstructure fiber.

In 1995, he held a research position at Argonne
National Laboratory, working on high-temperature
superconductors. His current research interests

include ultrafast semiconductor spectroscopy, nonlinear fiber optics, mi-
crostructure fibers and ultrashort pulse characterization.

Mr. Washburn is a member of the Optical Society of America and the IEEE
Lasers and Electro-Optics (LEOS) Society.

Stephen E. Ralph received the B.E.E. degree in
electrical engineering degree (with highest honors)
from Georgia Institute of Technology (Georgia
Tech), Atlanta, in 1980, and the Ph.D. degree in
electrical engineering from Cornell University,
Ithaca, NY, in 1998. His research focused on the
optical detection of highly nonequilibrium transport
in heterojunction devices.

In 1988, he began a postdoctoral position at AT&T
Bell Laboratories. In 1990, he joined the IBM T. J.
Watson Research Center, Yorktown Heights, NY. In

1992, he joined the faculty in the Physics Department, Emory University, At-
lanta, GA. In 1998, he became an Associate Professor of Electrical and Com-
puter Engineering at Georgia Tech, where his work currently focuses on the
development of ultrafast optical devices for telecommunications.

Dr. Ralph is a member of the American Physical Society, the IEEE Lasers
and Elecro-Optics Society, and the Optical Society of America.

Anthony J. SpringThorpe, photograph and biography not available at the time
of publication.


